Pyrimidine-2,4,6-trione derivatives and their inhibition of mutant SOD1-dependent protein aggregation. Toward a treatment for amyotrophic lateral sclerosis.

نویسندگان

  • Guoyao Xia
  • Radhia Benmohamed
  • Jinho Kim
  • Anthony C Arvanites
  • Richard I Morimoto
  • Robert J Ferrante
  • Donald R Kirsch
  • Richard B Silverman
چکیده

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, leading to muscle weakness, paralysis, and death, most often from respiratory failure. The only FDA-approved drug for the treatment of ALS, riluzole, only extends the median survival in patients by 2-3 months. There is an urgent need for novel therapeutic strategies for this devastating disease. Using a high-throughput screening assay targeting an ALS cultured cell model (PC12-G93A-YFP cell line), we previously identified three chemotypes that were neuroprotective. We present a further detailed analysis of one promising scaffold from that group, pyrimidine-2,4,6-triones (PYTs), characterizing a number of PYT analogues using SAR and ADME. The PYT compounds show good potency, superior ADME data, low toxicity, brain penetration, and excellent oral bioavailability. Compounds from this series show 100% efficacy in the protection assay with a good correlation in activity between the protection and protein aggregation assays. The modifications of the PYT scaffold presented here suggest that this chemical structure may be a novel drug candidate scaffold for use in clinical trials in ALS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis

Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...

متن کامل

Heat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...

متن کامل

Heat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...

متن کامل

Molecular Chaperone Mediated Late-Stage Neuroprotection in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons in the spinal cord, brain stem, and motor cortex. Mutations in superoxide dismutase (SOD1) are associated with familial ALS and lead to SOD1 protein misfolding and aggregation. Here we show that the molecular chaperone, HSJ1 (DNAJB2), mutations in which cause distal her...

متن کامل

Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protein aggregation.

Recent studies provide evidence that wild-type Cu/Zn-superoxide dismutase (SOD1(hWT)) might be an important factor in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). In order to investigate its functional role in the pathogenesis of ALS, we designed fusion proteins of two SOD1 monomers linked by a polypeptide. We demonstrated that wild-type-like mutants, but not SOD1(G85R) homodimers,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 54 7  شماره 

صفحات  -

تاریخ انتشار 2011